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Transient Thermal Response of a Homogeneous
Composite Thin Layer Exposed to a Fluctuating
Heating Source under the Effect of the
Dual-Phase-Lag Heat-Conduction Model

M. A. Hader,1,2 M. A. Al-Nimr,1 and V. A. Hammoudeh1
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The transient thermal behavior of a homogeneous composite domain
described by three macroscopic heat-conduction models, under the effect of
a fluctuating heating source, was investigated analytically. The composite
domain consists of a matrix (domain 1) and inserts (domain 2), each made
of different material. The matrix has a high concentration or volume fraction
(> 0.5) while the insert has a low concentration or volume fraction (< 0.5).
The range of parameters within which the use of the hyperbolic or the dual-
phase-lag heat-conduction models is a necessity was traced. The role that the
frequency and amplitude of the fluctuating thermal disturbance plays in using
the appropriate macroscopic heat-conduction model was studied.

KEY WORDS: composite; dual-phase-lag model; heat conduction; fluctuating
heat source.

1. INTRODUCTION

The thermal behavior of a composite thin layer exposed to a fluctuating
heating source is an important problem in heat transfer. It is used to sim-
ulate a wide range of applications such as laser synthesis and processing of
thin-film deposition [1]. Such applications involve a heat source such as a
laser and/or microwave of extremely short duration or very high frequency,
very high temperature gradients, and extremely short times; and the heat
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is found to propagate at a finite speed. Since the classical Fourier heat flux
model is based on an infinite speed of propagation (heat flux and temper-
ature gradients occur at the same time), it should be modified to account
for the finite speed of propagation.

Cattaneo [2] and Vernotte [3] suggested independently a modified heat
flux model. The constitutive law assumes that the heat flux vector (the
effect) and the temperature gradient (the cause) across a material volume
occur at different instants of time and the time delay between the heat flux
and the temperature gradient is the relaxation time τq . This leads to the
classical hyperbolic heat-conduction equation (HHCE) [4]:
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To remove the precedence assumption made in the thermal wave
model, as proposed in the HHCE, the dual-phase-lag (DPL) model is pro-
posed [5–7]. The dual-phase-lag model allows either the temperature gradi-
ent (cause) to precede the heat flux vector (effect) or the heat flux vector
(cause) to precede the temperature gradient (effect) in the transient pro-
cess. Mathematically, the heat-conduction equation under the dual-phase-
lag effect [5–7] is expressed as
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where τT is the phase lag in the temperature gradient vector and τq is
the phase lag in the heat flux vector. For the case of τT > τq , the tem-
perature gradient established across a material volume is a result of the
heat flow, implying that the heat flux vector is the cause and the temper-
ature gradient is the effect. For τT < τq , on the other hand, heat flow is
induced by the temperature gradient established at an earlier time, imply-
ing that the temperature gradient is the cause, while the heat flux vector
is the effect.

In the absence of the temperature gradient phase lag (τT =0), Eq. (2)
reduces to the classical hyperbolic heat-conduction equation as described
by Eq. (1). Also, in the absence of the two phase lags (τT = τq = 0), Eq.
(2) reduces to the classical diffusion equation employing Fourier’s law.

In the literature, numerous studies have been conducted to inves-
tigate the thermal behavior of slabs subject to non-fluctuating heating
sources under the effect of the hyperbolic and dual-phase-lag heat-conduc-
tion models. A comprehensive survey of work in this area can be found
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in Ref. 8. However, all of the previous investigations deal with a homoge-
neous domain consisting of a single material.

The thermal behavior of a multi-layered thin slab under the effect
of the dual-phase-lag heat-conduction model has been investigated [9, 10].
But in many applications the structure of the film consists of a one-layer
composite materiel [11]. Only a few studies [12–14] have been conducted to
investigate the dynamic thermo-elastic behavior of a composite slab using
the hyperbolic and dual-phase-lag heat-conduction models, but in these
studies the heating source considered was a unit step function.

The aim of the present work is to investigate the thermal behavior of
a homogeneous composite domain heated by a very high frequency fluctu-
ating heating source. The composite domain consists of a well-mixed dom-
inant matrix (domain 1) and inserts (domain 2), each made of different
material. The matrix has a high concentration or volume fraction (>0.5)
while the insert has a low concentration or volume fraction (< 0.5). The
thermal behavior of such a composite domain will be investigated as
described by the three macroscopic heat-conduction models and under the
effect of a fluctuating heating source with very high frequency. The range
of parameters within which the use of the hyperbolic or the dual-phase-
lag heat-conduction models is a necessity will be traced. The role that the
frequency of the fluctuating thermal disturbance plays in using the appro-
priate macroscopic heat-conduction model will be studied.

2. ANALYSIS

Consider a composite layer of thickness 2L for which the boundaries
are maintained at a fixed temperature Tw. The homogeneous composite
layer consists of a well-mixed dominant matrix (domain 1) and inserts
(domain 2) as shown in Fig. 1. The inserts may be added to reinforce the
slab’s structure or to give the slab certain required physical and chemical
properties, or may be impurities formed during the production process. A
high frequency volumetric heating source generates heat within the matrix
domain. The second domain, the inserts, is set to be a stationary solid,
without heat generation (u2 =0).

At this step of the analysis, the following dimensionless parameters
are introduced:

θ = T −T∞
T∞

, η= α1t

L2
, ξ = x

L
, and τj = τ jα1

L2
,

The governing equations describing the slab thermal behavior can be writ-
ten in the following dimensionless form [14]:
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Fig. 1. Schematic representation of the domain under
consideration.
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where ε is the insert volume fraction ε =V1/(V1 +V2),V is the volume, ρ

is the mass density, c is the specific heat, h is the volumetric heat transfer
coefficient that represents all modes of heat transfer between the matrix
and the inserts, and subscripts 1 and 2 refer to domain 1 (matrix) and
domain 2 (inserts), respectively.

It will be assumed that thermal diffusion within the inserts (domain
2) has an insignificant effect due to the fact that these inserts are in the
form of discrete, infinitesimal regions that are not in perfect thermal con-
tact with each other. In addition, neglecting thermal diffusion within the
second domain is justified when this domain consists of low thermal con-
ductivity impurities. As a result of one or both of these two assumptions,
the conduction within the inserts is neglected and B is set to zero.

Two special heat-conduction models may be obtained from Eq. (3).
These are the hyperbolic (wave) heat-conduction model which is obtained
by setting τT1 = τT2 = 0, and the parabolic (diffusion) heat-conduction
model which is obtained by setting

τq1 = τq2 = τT1 = τT2 =0.

Since the composite domain is homogeneous and well-mixed, it has the
following boundary conditions:

θ1(η,1) = θ2(η,1)=0
∂θ1

∂ξ
(η,0) = ∂θ2

∂ξ
(η,0)=0 (4)

3. SOLUTION METHODOLOGY

A fluctuating harmonic heating source is assumed to be generated
within the main domain (matrix), and it has the following form:

U1 =UoIm
{
eiωη

}
(5)
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where ω is the dimensionless frequency given as ω = ωL2

α
and ω is the

angular velocity of the fluctuating heating source. Although the heating
source may fluctuate in another form than sinusoidal, it can be expressed
in terms of a summation of trigonometric harmonic functions using a
Fourier series expansion. With B =0, Eqs. (3a) and (3b) are rewritten as
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with the following boundary conditions:

θ1(η,1)= θ2(η,1)=0
∂θ1

∂ξ
(η,0)= ∂θ2

∂ξ
(η,0)=0 (7)

It should be noted here that since the heating source is fluctuating, no
initial condition is needed. Since the temperature within the two domains
will have to follow the heating source in its general profile, even though
not with the same amplitude, θ can be assumed to be in the form,

θj = Im
{
Vj (ξ) eiωη

}
(8)

Substituting this form into Eq. (6) and solving, we obtain the following
solution:

V1 (ξ) = γ

λ2

(
1− cosh λξ

cosh λ

)
(9)

V2 = βV1 (10)

where

γ =Uo

1+ iωτq,1

1+ iωτT,1
(11)

λ2 = E − τq,1ω
2 + iω+Eτq,1iω−Eβ −Eβτq,1iω

1+ τT ,1iω
(12)

and β = F + τq,2Fiω

F − τq,2ω
2 + iω+ τq,2Fiω

(13)
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Fig. 2. Harmonic variation in temperature as predicted by the
three models. (ω = 0.1, ξ = 0.5, τT ,1 = τT ,2 = 150τq,1, τq,1 = 1 ×
10−2,E =F =1).

It is clear from Eq. (10) that β represents the deviation in magnitude
and the phase shift in the time domain between θ1 and θ2. This equation
can also be written as

V 2 =
√

a2 +b2eiδ (14)

where

a =F − τq,2ω
2 + τq,2ω

(
ω+ τq,2Fω

)
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b= τq,2ω
(
F − τq,2ω

2
)

−ω− τq,2Fω (16)

and δ = tan−1
(

b

a

)
(17)

where δ represents the phase shift between θ1 and θ2, which gives an indi-
cation about the time required by θ2 to follow the changes in θ1.
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Fig. 3. Harmonic variation in temperature as predicted by
the three models. (ω=1.0, ξ =0.5, τT ,1 = τT ,2 =150τq,1, τq,1 =
1×10−2,E =F =1).

4. RESULTS AND DISCUSSION

It is clear from the governing equations that the dimensionless param-
eters that affect the composite domain thermal behavior are E,F, τq,1, τq,2,
τT ,1,ω, and Uo. The parameters E and F represent a sort of modified vol-
umetric heat transfer coefficients. These parameters measure the convec-
tive heat transfer coefficients between the hot matrix (domain 1) and the
inserts (domain 2). The parameters τq,1 and τq,2 represent the relaxation
times in heat flux in both domains, while the parameter τT ,1 represents
the relaxation time in the temperature gradient in domain 1. It is clear
that τT ,2 does not appear in the present work because the diffusion heat
flux in domain 2 is assumed to be insignificant. This is due to the fact
that the insert is of very low concentration and it is in the form of dis-
crete infinitesimal regions in which heat conduction is insignificant. The
parameter ω represents the dimensionless angular velocity of the fluctuat-
ing heating source, and Uo represents the dimensionless amplitude of the
heating source which generates heat in the matrix.

Figures 2–4 shows the harmonic variation in temperature as pre-
dicted by the three models at different values of the angular velocity ω.
All three models show that this deviation increases as ω increases. This
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Fig. 4. Harmonic variation in temperature as predicted by the three
models. (ω=10, ξ =0.5, τT ,1 = τT ,2 =150τq,1, τq,1 =1×10−2,E =F =1).

phenomenon can also be concluded by looking at Eqs. (18)–(22) which
show that as ω increases β decreases, and as a result, the deviation
between V1 and V2 increases and hence the deviation between θ1 and
θ2 increases. This is a result of the fact that as ω increases, the heat is
generated in domain 1 at a higher and higher frequency which does not
give domain 2 enough time to attain the temperature of domain 1. This
increases the deviation between the magnitudes of both domains’ temper-
atures and also increases the phase shift between the two temperatures as
will be shown later. The figures also show that for a large value of ω, the
relative deviation between θ1 and θ2 increases but the absolute deviation
decreases due to the reduction in the values of θ1 and θ2. The reduction
in θ1 and θ2 with an increase in ω is due to the fact that both domains do
not have enough time to absorb heat from the generating heating source
when the heating source fluctuates with a high frequency. It may be con-
cluded that the deviation between θ1 and θ2 appears at ω>0.05.
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Fig. 5. Harmonic variation in temperature as predicted by the dual-
phase-lag model at different values of Uo.(ω = 1.0, ξ = 0.5, τT ,1 = τT ,2 =
150τq,1, τq,1 =1×10−2,E =F =1).

Figures 2–4 also show that the deviation between the dual-phase-lag
model and the other two models starts to appear at ω>0.5 and the devi-
ation between the hyperbolic and parabolic models starts to appear at
ω>5.

The phase lag between the heat flux q and the temperature gradient
∂T
∂x

is relatively small, but this phase lag becomes a significant effect when
the heat flux is generated with a very high frequency. This fact may be
concluded by looking at Eq. (19). Also, Figs. 2–4 show that the deviation
between the dual-phase-lag and parabolic heat-conduction models appears
before the deviation between the parabolic and hyperbolic models. This is
expected since the dual-phase-lag heat-conduction model takes into con-
sideration two sources of deviation; the phase lag in heat flux (due to τq)

and the phase lag in temperature gradient (due to τT ). The phase shift
between θ1 and θ2 increases as ω increases but this phase shift reaches the
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Fig. 6. Harmonic variation in temperature as predicted by the dual-
phase-lag model at different values of E. (ω = 1.0, ξ = 0.5, τT ,1 = τT ,2 =
150τq,1, τq,1 =1×10−2,F =1).

asymptotic value −π
2 as ω becomes very large. This behavior is predicted

by all three heat-conduction models.
Figure 5 shows the effect of the dimensionless heating source Uo on

the composite domain thermal behavior. It is clear from the figure that
Uo affects the amplitude of the deviation between θ1 and θ2 but it has no
effect on the phase shift between them. The figure shows that the devia-
tion between θ1 and θ2 increases as Uo increases. The same is true for the
hyperbolic heat-conduction model which is a special case obtained from
the dual-phase-lag model with τT ,1 =0.

The effect of the modified volumetric heat transfer coefficients (E,F )
on the composite domain thermal behavior under the effect of the
dual-phase-lag heat-conduction model is shown in Figs. 6 and 7. As E

and F increase, the convective heat transfer from the hot matrix to the
insert increases, and as a result, θ1 decreases and θ2 increases. However,
the reduction in θ1 is insignificant when compared to the increase in θ2.
This is due to the relatively low mass fraction of the insert compared to
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Fig. 7. Harmonic variation in temperature as predicted by the dual-
phase-lag model at different values of F . (ω = 1.0, ξ = 0.5, τT ,1 = τT ,2 =
150τq,1, ττq,1 =1×10−2,E =1).

the mass fraction of the matrix. The composite domain is assumed to have
ε close to zero which yields inserts of low total thermal capacity. At large
values of E and F , both domains attain almost the same temperature due
to the increase in the convective heat transfer between them. Also, the
phase shift between the two temperatures θ1 and θ2 diminishes as E and
F increase.

The effect of E and F on θ1 and θ2 becomes insignificant at large
values of E and F . As the convective heat transfer coefficients E and F

increase, the heat transfer between θ1 and θ2 increases and θ2 approaches
θ1. In the limiting case of E and F→ ∞, then θ2 → θ1, and the convec-
tive heat transfer between θ1 and θ2, which is proportional to E (θ1 − θ2)

or F (θ1 − θ2), diminishes. This implies that the effect of E and F disap-
pears as θ2 → θ1. The very same behavior holds true for the hyperbolic
heat-conduction model.
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Fig. 8. Harmonic variation in temperature as predicted by the dual-
phase-lag model at different values of τq,1. (ω = .0, ξ = 0.5, τT ,1 = τT ,2 =
150τq,1,E =F =1).

Figure 8 shows the harmonic variation in temperature as predicted by
the dual-phase-lag model at different values of τq,1. It is clear that for a
large τq,1E;F has a more significant effect on θ1 and θ2, and also the
amplitude increase as τq,1. Figure 9 shows the harmonic variation in tem-
perature as predicted by the dual-phase-lag model at different values of
τT ,1.

The behavior of the phase shift δ with changing frequency ω is shown
in Fig. 10. It is clear that the phase shift increases with an increase
in the heating source frequency until it reaches the asymptotic value of
−1.57(−π/2), and is not effected by the variation of τq,2.

5. CONCLUSIONS

In this study, the validity of using three macroscopic heat-conduction
models under the effect of a fluctuating volumetric heating source, which
heats a composite thin layer is investigated. The composite layer consists
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Fig. 9. Harmonic variation in temperature as predicted by the dual-phase-lag
model at different values of τT ,2. (ω=1.0, ξ =0.5, τq,1 =1×10−2,E =F =1).

of a matrix (domain 1) and inserts (domain 2); the inserts may be added
to reinforce the slab’s structure or to give the slab certain required phys-
ical and chemical properties. The three models are the parabolic, hyper-
bolic, and dual-phase-lag heat-conduction models. The heating disturbance
is assumed to fluctuate in a harmonic manner. It is found that the use of
the dual-phase-lag heat-conduction model is essential at high frequencies
of the surface disturbance. It was found that the use of the dual-phase-lag
heat-conduction model is essential at high frequencies of the volumetric
disturbance (ω>0.05). It is found that as E and F (a kind of dimension-
less convective heat transfer coefficients) increase, the difference between θ1
and θ2 decreases. An increase of the heating source magnitude Uo results
in an increase of the magnitudes of θ1 and θ2 but does not affect the
difference between them. As for the phase shift δ, it is found to increase
as the frequency ω increases until it reaches the fixed asymptotic value of
−π

2 at very high frequencies.
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NOMENCLATURE

c specific heat
h volumetric heat transfer coefficient
k thermal conductivity
2L slab thickness
t time
T temperature
Tw wall temperature
u heating source per unit volume
uo amplitude of the eating source per unit volume
U dimensionless heating source, uατq

T∞k

Uo amplitude of the dimensionless heating source, uoατq

T∞k

x axial coordinate
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Greek Symbols

α thermal diffusivity, k
ρc

η dimensionless time, αt

L2

ρ density
ε the insert (material 2) volume fraction, V2

V1+V2

θ dimensionless temperature, T −T∞
T∞

τq phase lag in heat flux
τq dimensionless phase lag in heat flux, ατq

L2

τT phase lag in temperature gradient
τT dimensionless phase lag in temperature gradient, ατT

L2

ξ dimensionless axial coordinate, x
L

ω angular velocity of the fluctuating wall temperature
ω dimensionless angular velocity of the fluctuating wall temperature,

ωL2

α
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